If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3y2 + 7y + 3 = 0 Reorder the terms: 3 + 7y + 3y2 = 0 Solving 3 + 7y + 3y2 = 0 Solving for variable 'y'. Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 1 + 2.333333333y + y2 = 0 Move the constant term to the right: Add '-1' to each side of the equation. 1 + 2.333333333y + -1 + y2 = 0 + -1 Reorder the terms: 1 + -1 + 2.333333333y + y2 = 0 + -1 Combine like terms: 1 + -1 = 0 0 + 2.333333333y + y2 = 0 + -1 2.333333333y + y2 = 0 + -1 Combine like terms: 0 + -1 = -1 2.333333333y + y2 = -1 The y term is 2.333333333y. Take half its coefficient (1.166666667). Square it (1.361111112) and add it to both sides. Add '1.361111112' to each side of the equation. 2.333333333y + 1.361111112 + y2 = -1 + 1.361111112 Reorder the terms: 1.361111112 + 2.333333333y + y2 = -1 + 1.361111112 Combine like terms: -1 + 1.361111112 = 0.361111112 1.361111112 + 2.333333333y + y2 = 0.361111112 Factor a perfect square on the left side: (y + 1.166666667)(y + 1.166666667) = 0.361111112 Calculate the square root of the right side: 0.600925213 Break this problem into two subproblems by setting (y + 1.166666667) equal to 0.600925213 and -0.600925213.Subproblem 1
y + 1.166666667 = 0.600925213 Simplifying y + 1.166666667 = 0.600925213 Reorder the terms: 1.166666667 + y = 0.600925213 Solving 1.166666667 + y = 0.600925213 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + y = 0.600925213 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + y = 0.600925213 + -1.166666667 y = 0.600925213 + -1.166666667 Combine like terms: 0.600925213 + -1.166666667 = -0.565741454 y = -0.565741454 Simplifying y = -0.565741454Subproblem 2
y + 1.166666667 = -0.600925213 Simplifying y + 1.166666667 = -0.600925213 Reorder the terms: 1.166666667 + y = -0.600925213 Solving 1.166666667 + y = -0.600925213 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + y = -0.600925213 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + y = -0.600925213 + -1.166666667 y = -0.600925213 + -1.166666667 Combine like terms: -0.600925213 + -1.166666667 = -1.76759188 y = -1.76759188 Simplifying y = -1.76759188Solution
The solution to the problem is based on the solutions from the subproblems. y = {-0.565741454, -1.76759188}
| -3=-1.125s | | 3y-2=y-6 | | 3ax-8=ax | | 13-4(x+2)=15+x | | 3x-4y=-25 | | 100x+8y=1240 | | 7y-6=57 | | 5x+10(x+8)=245 | | (x+4)(x+3)=20 | | 5w^2-7w=6 | | y-16=2 | | x=3y+15 | | -x^2-4=0 | | 4x*87=98 | | 2(3x-5)=4x+9 | | 9-33(6)=y | | 0.10x+0.12(x+500)=214 | | 15n^2-16n-15= | | 8y+19=-5 | | x^4-2x^3-6x^2+5x+2=0 | | n-14=20 | | 7=4-z | | (3x+5)(5x-5)= | | 48841y^2+6187y+187=0 | | 4y-13=-9 | | 3n+15=42 | | x^2+x-450=0 | | -2[(4k+1)-(8k-5)]=7(4-k)-7 | | x^2-x-9.75=0 | | 64z^2-80z=-25 | | 4+2x+3=19 | | -[9z-(20z+7)]=7+(10z+5) |